Regulation of oxygen transport during brain activation: stimulus-induced hemodynamic responses in human and animal cortices
نویسندگان
چکیده
BACKGROUND: The correlation between regional changes in neuronal activity and changes in hemodynamics is a major issue for noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared optical imaging (NIOI). A tight coupling of these changes has been assumed to elucidate brain function from data obtained with those techniques. In the present study, we investigated the relationship between neuronal activity and hemodynamic responses in the occipital cortex of humans during visual stimulation and in the somatosensory cortex of rats during peripheral nerve stimulation. METHODS: The temporal frequency dependence of macroscopic hemodynamic responses on visual stimuli was investigated in the occipital cortex of humans by simultaneous measurements made using fMRI and NIOI. The stimulus-intensity dependence of both microscopic hemodynamic changes and changes in neuronal activity in response to peripheral nerve stimulation was investigated in animal models by analyzing membrane potential (fluorescence), hemodynamic parameters (visible spectra and laser-Doppler flowmetry), and vessel diameter (image analyzer). RESULTS: Above a certain level of stimulus-intensity, increases in regional cerebral blood flow (rCBF) were accompanied by a decrease in regional cerebral blood volume (rCBV), i.e., dissociation of rCBF and rCBV responses occurred in both the human and animal experiments. Furthermore, the animal experiments revealed that the distribution of increased rCBF and O2 spread well beyond the area of neuronal activation, and that the increases showed saturation in the activated area. CONCLUSIONS: These results suggest that above a certain level of neuronal activity, a regulatory mechanism between regional cerebral blood flow (rCBF) and rCBV acts to prevent excess O2 inflow into the focally activated area.
منابع مشابه
The time course of the BOLD response in the human auditory cortex to acoustic stimuli of different duration.
The relationship between activity within the human auditory cortices and the duration of heard tones was investigated by measuring the hemodynamic response with functional magnetic resonance imaging. We demonstrate that there is no significant influence of stimulus duration as used here on the intensity and spatial extent of the hemodynamic response in the auditory cortices. We found however, t...
متن کاملHuman Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).
Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacen...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملP38: The Immunoregulatory Effect of Cyclic Dinucleotides on Human Immune Cells
In multiple sclerosis (MS) beneficial effects have been assigned to the interferon (IFN)-I subclass IFN-ß, making its administration a first-line disease-modifying treatment in MS. IFN-I responses can be induced by cyclic-dinucleotide (CDN) triggered activation of Stimulator-of-interferon-genes (STING) and have essential immunomodulatory effects. A beneficial effect of STING activation on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dynamic medicine : DM
دوره 2 شماره
صفحات -
تاریخ انتشار 2003